11.8.3 Silicon Dioxide, SiO₂ 95% of the earth's crust is made up of silica and silicates. Silicon dioxide, commonly known as silica, occurs in several crystallographic forms. Quartz, cristobalite and tridymite are some of the crystalline forms of silica, and they are interconvertable at suitable temperature. Silicon dioxide is a covalent, three-dimensional network solid in which each silicon atom is covalently bonded in a tetrahedral manner to four oxygen atoms. Each oxygen atom in turn covalently bonded to another silicon atoms as shown in diagram (Fig 11.6). Each corner is shared with another tetrahedron. The entire crystal may be considered as giant molecule in which eight membered rings are formed with alternate silicon and oxygen atoms. Fig. 11.6 Three dimensional structure of SiO₂ Silica in its normal form is almost nonreactive because of very high Si—O bond enthalpy. It resists the attack by halogens, dihydrogen and most of the acids and metals even at elevated temperatures. However, it is attacked by HF and NaOH. $$SiO_2 + 2NaOH \rightarrow Na_2SiO_3 + H_2O$$ $SiO_2 + 4HF \rightarrow SiF_4 + 2H_2O$ Quartz is extensively used as a piezoelectric material; it has made possible to develop extremely accurate clocks, modern radio and television broadcasting and mobile radio communications. Silica gel is used as a drying agent and as a support for chromatographic materials and catalysts. Kieselghur, an amorphous form of silica is used in filtration plants.